
PHOSPHORUS: A Task-Based Agent Matchmaker

Yolanda Gil
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292, U.S.A.

gil@isi.edu

Surya Ramachandran
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292, U.S.A.

surya@isi.edu

ABSTRACT
PHOSPHORUS is an agent matchmaking service that exploits do-
main ontologies, description logic, and a highly declarative lan-
guage to reason about task-related agent capabilities. PHOSPHO-
RUS uses the EXPECT goal language to represent the tasks that
agents are capable of accomplishing, as well as requests to locate
agents with a required capability. PHOSPHORUS supports match-
ing through subsumption, reverse subsumption, and several kinds
of goal reformulation.

1. INTRODUCTION
Multi-agent architectures typically offer matchmaking services

that can be queried to find what agents can fulfill a requested ser-
vice. For example, a route planning agent may query about threat
detection agents and invoke them in order to make a safe choice
among all possible routes. Typically, simple string matching suf-
fices since the agent communities are relatively small and the agents
that need to issue a request can be told beforehand what other
agents are available and how they have to be invoked. In large and
heterogeneous communities of agents, where the agent that formu-
lates the request would have no idea of whether and how another
agent has advertised relevant services, there is a need for more so-
phisticated matchmaking mechanisms.

Our research on agent matchmaking draws from previous work
on matching problem solving goals and methods within the EX-
PECT architecture [5]. In our approach, task descriptions are tightly
integrated with domain ontologies, in our case specified in Loom,
a knowledge representation system based on description logic. We
use EXPECT’s language to express agent capabilities and requests.
These are automatically translated into Loom descriptions, which
are then organized in a subsumption hierarchy that exploits the de-
scriptions in the domain ontologies [3]. In contrast with other work
in matchmaking using logic descriptions [4, 6], PHOSPHORUS
reasons not just with the parameters but with the whole expression
that specifies capabilities and requests, including any constraints on
the parameters of a capability.

PHOSPHORUS is an agent matchmaking service that we are de-
veloping as part of our work in the DARPA-funded Electric Elves

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AGENTS’01,May 28-June 1, 2001, Montréal, Quebec, Canada.
Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

(E-Elves) project [2], an agent-based environment that integrates
agent organizations and human organizations. Typical tasks in this
environment involve planning a schedule for a visitor, setting up
and attending meetings, and organizing off-site demonstrations and
visits. Researchers, students, technical support personnel, and project
assistants play different roles in each of these tasks and each person
has different capabilities to offer in the organization.

2. REPRESENTING AGENT CAPABILITIES
Agent capabilities and requests are represented in the same lan-

guage, which is EXPECT’s language for goals and capabilities [5].
They are represented as verb clauses with typed arguments, as in
a case grammar. Each argument has a name and a parameter. Ar-
gument names are typically a preposition. A parameter may be:
1) a specific instance, e.g., the Phosphorus project, represented
as Phosphorus ; 2) an abstract concept, e.g., a demonstration,
represented as(spec-of demonstration) ; 3) an instance
type, e.g., vcr equipment, represented as(inst-of vcr) ; 4)
a set of instances, intensionally or extensionally specified, e.g.,
projects concerning agents, represented as(set-of (inst-of
agent-related-projects)) or (PHOSPHORUS ARIADNE
TEAMCORE); 5) a set of concepts, intensionally or extensionally
specified, e.g., vcr and lcd projectors, represented as(vcr lcd) .
Here are some examples of agent capabilities advertised using this
representation:

"agents that can process reimbursement for a receipt"
((capability

(process (obj (spec-of reimbursement))
(for (?r is (inst-of receipt)))))

(agents (katya fanny tanya)))

"agents that can demo Phosphorus"
((capability (demo (obj Phosphorus)))

(agents (jihie surya)))

"agents that can take a visitor to lunch"
((capability (take (obj (?v is (inst-of visitor)))

(to (spec-of lunch))))
(agents (tambe knoblock minton chalupsky gil)))

Notice that an important feature of this language is that it al-
lows a more declarative description of task qualification parame-
ters (e.g., processing the reimbursement of a given receipt versus
processing the validity of a given receipt) in addition to data pa-
rameters.

Requests are formulated in the same language. For example, a
request for an agent that can reimburse a traveller for two trips can
be formulated as:(process (obj (spec-of reimburse-
ment)) (for (Washington-trip-receipt Palo-Alto-
trip-receipt))) . Requests do not have to be instantiated, for
example their arguments can query about general types of instances

as in(process (obj (spec-of reimbursement)) (for
(set-of (inst-of receipt)))) .

3. MATCHING REQUESTS
Agent capabilities and requests are translated into LOOM defi-

nitions, following an algorithm described in [3]. For example, the
request above for reimbursement of two trips is translated into:

(defconcept process-reimbursement38
:is (:and process

(:the obj (:and concept-description reimbursement))
(:the of (:and number extensional-instance-set

(:filled-by instance-name
Washington-trip-receipt)

(:filled-by instance-name
Palo-Alto-trip-receipt)))))

LOOM’s classifier is now able to reason about these definitions
and places them in a lattice, where more general definitions sub-
sume more specific ones. Notice that this subsumption reasoning
uses the definitions of the domain terms and ontologies that are con-
tained in the domain knowledge bases. As a result, the capability
to “setup equipment” will subsume one to “setup a vcr”, because
according to the domain ontologies equipment subsumes vcr.

Subsumption matching can help find suitable capabilities when
presented with a query, but in some cases no subsuming capability
is offered by any agent. PHOSPHORUS uses reverse subsumption-
based matching to find agents whose capabilities are subsumed by
the request, and so they can satisfy some aspect of the original re-
quest. In other cases it may be possible to fulfill the request by
decomposing it expressing it in different terms, resulting in a more
flexible matching service. PHOSPHORUS supports several types
of reformulations. Acovering reformulationis a form of divide and
conquer. It transforms a request into a set of requests that partition
the original one. If all the requests in the set are achieved, the intent
of the original request is achieved. Here is an example based on the
breakdown of research projects:

Request:
(breakdown (discuss (obj (spec-of isi-coabs-project))))

Reply:
(COVERING -name ARIADNE-PROJECT

-matches KNOBLOCK MINTON LERMAN
-name PHOSPHORUS-PROJECT

-matches GIL SURYA HANS TAR
-name TEAMCORE-PROJECT

-matches
COVERING
(-name MULTIAGENT-LEARNING-PROJECT

-matches MODI TAMBE
-name PDA-PROJECT

-matches TAMBE PYNADATH LINGDEI
-name ADJUSTABLE-AUTONOMY-PROJECT

-matches TAMBE SCERRI PYNADATH
-name TEAMWORK-PROJECT

-matches TAMBE PYNADATH MODI)
-name ROSETTA-PROJECT

-matches GIL HANS TAR)

A set reformulationis like a covering reformulation except that
it involves a request over a set of objects which is reformulated into
a set of requests over individual objects. Aninput reformulation
occurs when a request is specified with a general parameter and no
single agent is available at a sufficiently general level to handle the
parameter. In that case, the goal can be reformulated into cases
based on the subtypes of the parameter given in the ontologies. Re-
formulations allow stating the description of required capabilities
more independently from the descriptions of the requests that are
posted. The benefit is a more loosely coupling between agent capa-
bilities and requests, i.e., between what is to be accomplished and
what are possible ways to accomplish it.

Requests can be sent to PHOSPHORUS by another software
agent, as shown above. PHOSPHORUS can also be used inter-
actively through an interface that allows a person to formulate a
request and see what agents have declared to have a matching capa-
bility. This interface is based on EXPECT’s knowledge acquisition
tools [1]. We are currently extending this interface to allow people
to specify and update their capabilities.

In summary, the main features of our approach are:

� exploit domain ontologies to represent capabilities and re-
quests

� represent explicitlytask qualification parametersthat are part
of the capability description in addition to data needed to
achieve the capability

� support flexible matching techniques that go beyond exact
match, such as subsumption and reformulation.

� it is human understandable as well as transparent to machines

� support self-organizing libraries of capabilities

There are many interesting challenges lying ahead in this work
that will enable us to further investigate the use of structured rep-
resentations for representing tasks, goals, activities, capabilities,
and objectives. Including people as agents presents additional chal-
lenges regarding capability representations. For example, in princi-
ple anyone has the capability to call a taxi for a visitor (and will do
so if necessary), but project assistants are the preferred option. De-
pending on upcoming deadlines, a researcher may be capable but
not willing to participate in a visitor’s schedule. Many such issues
need to be addressed in an agent architecture that includes people.

Acknowledgements
We would like to thank other members of the EXPECT and the
Electric Elves projects for their contributions to this work. We
gratefully acknowledge the support of DARPA with grant F30602-
97-C-0068 as part of the DARPA Control of Agent-Based Systems
program.

4. REFERENCES
[1] Blythe, J., Kim, J., Ramachandran, S., Gil, Y. An Integrated

Environment for Knowledge Acquisition. InProc. of the
International Conference on Intelligent User Interfaces
(IUI-2001), Santa Fe, NM, January 2001.

[2] Chalupsky, H., Gil, Y., Knoblock, C., Lerman, K., Oh, J.,
Pynadath, D. V., Russ, T. A., Tambe, M. Electric Elves:
Applying Agent Technology to Support Human
Organizations. InProc. of the Thirteenth Annual Conference
on Innovative Applications of Artificial Intelligence
(IAAI-2001), Seattle, WA, August 2001.

[3] Gil, Y., and Gonzalez, P. Subsumption-based matching:
Bringing semantics to goals. InInternational Workshop on
Description Logics.

[4] Kuokka, D. and Harada, L. Modeling Web Sources for
Information Integration. InProceedings of the Fourteenth
International Conference on Artificial Intelligence
(IJCAI-95), Montreal, Canada, 1995.

[5] Swartout, B., and Gil, Y. EXPECT: Explicit representations
for flexible acquisition. InProc. Ninth Knowledge
Acquisition for Knowledge-Based Systems Workshop.

[6] Sycara, K.; Lu, J.; Klush, M.; and Widoff, S. Matchmaking
among heterogeneous agents in the internet. InAAAI Spring
Symposium on Intelligent Agents in Cyberspace.

